第1篇: 高考数学易错知识点整理

解决绝对值问题

主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。

具体转化方法有:

①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。

②零点分段讨论法:适用于含一个字母的多个绝对值的情况。

③两边平方法:适用于两边非负的方程或不等式。

④几何意义法:适用于有明显几何意义的情况。

因式分解

根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。因式分解的一般步骤是:

提取公因式

选择用公式

十字相乘法

分组分解法

拆项添项法

第2篇: 高考数学易错知识点整理

很多马上要高考学生的数学成绩提不上来,很大一部分原因就是他们对数学有畏惧心理。有的学生看到圆锥曲线和导数或是看到长一点、复杂一些的叙述就有了退却的心。而在考试中这部分的分数如果你不去努力,就永远不会挣到,所以第一个建议就是大胆的去做。

2、做题之后加强反思

高考生一定要明确一点,就是在平常做题的时候,目的不是做题快慢,也不是得分多少,而是要明白题目的解题方法和思路。所以,要把自己做过的题目加以反思,总结一下自己的收获。要做到知识成片,问题成串。这样日久天长之后,就会构建起一个内容与方法的知识系统。

有的高考生认为想要学好数学就要多做题。其实不然,的确应该适时的多做题,但却不能钻入题海,盲目堆题,这样在高考考试中也是很难会有作为的。所以要把提高数学当成自己的目标,要把自己的活动合理地系统地组织起来,要总结反思,水平才能长进。

3、错题本怎么用

数学的错题本不是你错了就要去记录,它的使用方法是摘抄不是照抄不误。如果你只顾着去采集问题,就失去了理解和挑选题目的过程,笔记也是一样的原理,如果老师说什么就记什么,那么你这节课就等同于没听。真正有效率的人,是会把知识简化,把书本读薄的。

第3篇: 高考数学易错知识点整理

1、遗忘空集致误

错因分析:由于空集是任何非空集合的真子集,因此,对于集合B,就有B=A,φ≠B,B≠φ,三种情况,在解题中如果思维不够缜密就有可能忽视了B≠φ这种情况,导致解题结果错误。尤其是在解含有参数的集合问题时,更要充分注意当参数在某个范围内取值时所给的集合可能是空集这种情况。

空集是一个特殊的集合,由于思维定式的原因,考生往往会在解题中遗忘了这个集合,导致解题错误或是解题不全面。

2、忽视集合元素的三性致误

错因分析:集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。在解题时也可以先确定字母参数的范围后,再具体解决问题。

3、四种命题的结构不明致误

错因分析:如果原命题是“若A则B”,则这个命题的逆命题是“若B则A”,否命题是“若┐A则┐B”,逆否命题是“若┐B则┐A”。

这里面有两组等价的命题,即“原命题和它的逆否命题等价,否命题与逆命题等价”。在解答由一个命题写出该命题的其他形式的命题时,一定要明确四种命题的结构以及它们之间的等价关系。

另外,在否定一个命题时,要注意全称命题的否定是特称命题,特称命题的否定是全称命题。如对“a,b都是偶数”的否定应该是“a,b不都是偶数”,而不应该是“a,b都是奇数”。

4、充分必要条件颠倒致误

错因分析:对于两个条件A,B,如果A=>B成立,则A是B的充分条件,B是A的必要条件;如果B=>A成立,则A是B的必要条件,B是A的充分条件;如果A<=>B,则A,B互为充分必要条件。解题时最容易出错的就是颠倒了充分性与必要性,所以在解决这类问题时一定要根据充要条件的概念作出准确的判断。

5、逻辑联结词理解不准致误

错因分析:在判断含逻辑联结词的命题时很容易因为理解不准确而出现错误,在这里我们给出一些常用的判断方法,希望对大家有所帮助:

p∨q真<=>p真或q真,

p∨q假<=>p假且q假(概括为一真即真);

p∧q真<=>p真且q真,

p∧q假<=>p假或q假(概括为一假即假);

┐p真<=>p假,┐p假<=>p真(概括为一真一假)。

6、求函数奇偶性的常见错误

错因分析:求函数奇偶性的常见错误有求错函数定义域或是忽视函数定义域,对函数具有奇偶性的前提条件不清,对分段函数奇偶性判断方法不当等。

判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域区间关于原点对称,如果不具备这个条件,函数一定是非奇非偶的函数。

在定义域区间关于原点对称的前提下,再根据奇偶函数的定义进行判断,在用定义进行判断时要注意自变量在定义域区间内的任意性。

7、抽象函数中推理不严密致误

错因分析:很多抽象函数问题都是以抽象出某一类函数的共同“特征”而设计出来的,在解决问题时,可以通过类比这类函数中一些具体函数的性质去解决抽象函数的性质。

解答抽象函数问题要注意特殊赋值法的应用,通过特殊赋值可以找到函数的不变性质,这个不变性质往往是进一步解决问题的突破口。

抽象函数性质的证明是一种代数推理,和几何推理证明一样,要注意推理的严谨性,每一步推理都要有充分的条件,不可漏掉一些条件,更不要臆造条件,推理过程要层次分明,书写规范。

8、函数零点定理使用不当致误

错因分析:如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也是方程f(c)=0的根,这个结论我们一般称之为函数的零点定理。

函数的零点有“变号零点”和“不变号零点”,对于“不变号零点”,函数的零点定理是“无能为力”的,在解决函数的零点时要注意这个问题。

9、求函数定义域忽视细节致误

错因分析:函数的定义域是使函数有意义的自变量的取值范围,因此要求定义域就要根据函数解析式把各种情况下的自变量的限制条件找出来,列成不等式组,不等式组的解集就是该函数的定义域。

在求一般函数定义域时要注意下面几点:

(1)分母不为0;

(2)偶次被开放式非负;

(3)真数大于0;

(4)0的0次幂没有意义。

函数的定义域是非空的数集,在解决函数定义域时不要忘记了这点。对于复合函数,要注意外层函数的定义域是由内层函数的值域决定的。

10、带有绝对值的函数单调性判断错误

错因分析:带有绝对值的函数实质上就是分段函数,对于分段函数的单调性,有两种基本的判断方法:

一是在各个段上根据函数的解析式所表示的函数的单调性求出单调区间,最后对各个段上的单调区间进行整合;

二是画出这个分段函数的图象,结合函数图象、性质进行直观的判断。研究函数问题离不开函数图象,函数图象反应了函数的所有性质,在研究函数问题时要时时刻刻想到函数的图象,学会从函数图象上去分析问题,寻找解决问题的方案。

对于函数的几个不同的单调递增(减)区间,千万记住不要使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可。

第4篇: 高考数学易错知识点整理

1,适用条件:[直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。x为分离比,必须大于1。注上述公式适合一切圆锥曲线。如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。

2,函数的周期性问题(记忆三个):1、若f(x)=-f(x+k),则T=2k;

2、若f(x)=m/(x+k)(m不为0),则T=2k;3、若f(x)=f(x+k)+f(x-k),则T=6k。注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。

3,关于对称问题(无数人搞不懂的问题)总结如下:1,若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2;2、函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;3、若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称

4,函数奇偶性1、对于属于R上的奇函数有f(0)=0;2、对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项3,奇偶性作用不大,一般用于选择填空

5,数列爆强定律:1,等差数列中:S奇=na中,例如S13=13a7(13和7为下角标);2等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差3,等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立4,等比数列爆强公式:S(n+m)=S(m)+q?mS(n)可以迅速求q

6,数列的终极利器,特征根方程。(如果看不懂就算了)。首先介绍公式:对于an+1=pan+q(n+1为下角标,n为下角标),a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p?(n-1)+x,这是一阶特征根方程的运用。二阶有点麻烦,且不常用。所以不赘述。希望同学们牢记上述公式。当然这种类型的数列可以构造(两边同时加数)

7,函数详解补充:1、复合函数奇偶性:内偶则偶,内奇同外2,复合函数单调性:同增异减3,重点知识关于三次函数:恐怕没有多少人知道三次函数曲线其实是中心对称图形。它有一个对称中心,求法为二阶导后导数为0,根x即为中心横坐标,纵坐标可以用x带入原函数界定。另外,必有唯一一条过该中心的直线与两旁相切。

8,常用数列bn=n×(2?n)求和Sn=(n-1)×(2?(n+1))+2记忆方法:前面减去一个1,后面加一个,再整体加一个2

9,适用于标准方程(焦点在x轴)爆强公式:k椭=-{(b?)xo}/{(a?)yo}k双={(b?)xo}/{(a?)yo}k抛=p/yo注:(xo,yo)均为直线过圆锥曲线所截段的中点。

10,强烈推荐一个两直线垂直或平行的必杀技:已知直线L1:a1x+b1y+c1=0直线L2:a2x+b2y+c2=0若它们垂直:(充要条件)a1a2+b1b2=0;若它们平行:(充要条件)a1b2=a2b1且a1c2≠a2c1[这个条件为了防止两直线重合)注:以上两公式避免了斜率是否存在的麻烦,直接必杀!